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Abstract

A minimal problem is formulated for determining the microstructure of open
celled, low density materials. The term microstructure means the manner of
connectivity of the sparse population of material members in 3-space. A
rigorous solution is found for the minimal problem and it takes the form of
diamond cubic symmetry. Thus, the minimal microstructure takes a crystalline
form of the diamond cubic type. An approximate approach is followed to
determine characteristics of the corresponding amorphous microstructure. The
form of the solution in the amorphous case is then used to deduce some
characteristics for the associated mechanical properties.

*Work was performed under the auspices of the U.S. DOE for the Lawrence Livermore National
Laboratory under contract W-7405-Eng-48.
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Extended Summary

The problem of minimal surfaces is classical. Lord Kelvin (1887) gave a
solution for a cellular construct that stood for over 100 years. However, the
problem goes back even beyond Kelvin to Plateau and interest in soap films
dominated by surface tension. One might expect that such an old problem
would be unlikely to yield to new approaches, but such is not the case. Recent
results have replaced Kelvin's solution and given valuable new insights, this is
the solution of Weaire and Phelan (1994).

The purpose of the present work is to see if the cellular minimal surface
problem and solution can be modified and adapted to some contemporary
problems of materials science. The specific application is to low density
materials, and the objective is the determination of the minimal cellular
microstructure for open celled, low density materials. The first step is to briefly
outline the classical problem of the minimal surface cellular form, applicable to
closed cell materials, thereafter the open cell case will be taken up. Lord Kelvin
(1887) gave F = 14 for a truncated octahedron as the proposed minimal area of
faces form which then in cellular form results in cubic symmetry. Weaire and
Phelan (1994) have recently revealed a completely unexpected and insightful
result which has a lower surface content than Kelvin's form, still retaining cubic
symmetry. This microstructure is composed of 14 faced cells having 12
pentagons and 2 hexagons combined with cells of regular dodecahedra, the
two cell types being in the ratio of 3 to 1 respectively. This is the current status
for the closed cell microstructure formulated as a minimal problem.

It is necessary to completely reformulate the minimal problem for application
to open celled, low density materials. This problem is derived in a form best
described as that of a minimal length problem corresponding to the total length
of the material members forming the microstructure, all expressed in suitably




non-dimensionalized form. The end result is a quantified measure, C, given in
the tabie below for various cell types.

Minimal Length Problem

Cell Type Faces, F (\%)1,-5 n C
Diamond Cubic 4 8.2 1/3 1.66
Simple Cubic 6 12 1/4 1.73
Weaire Phelan Form 13-1/2 16.0 1/3 2.31
Kelvin Form 14 16.0 1/3 2.31
Rhombic Dodecahedron 12 16.5 1/3 2.34

The cells are the standard space filling forms plus the newly described cell of
Weaire and Phelan. It is seen that the diamond cubic cell is the minimal value
for the cells considered. The diamond cubic cell is in fact the minimal form
since it is the only cell type possessing all tetrahedral angles for and with
straight edges. In loosely descriptive terms it can be said that the classical
minimal surface cell is the "smoothest" form that packs in 3 space, favoring
relatively large number of faces, F. In contrast, the minimal length cell is found
to be the "least smooth” form that packs in 3 space and thus favors small F,
specifically the F = 4 of diamond cubic.

In the present context, amorphous low density materials are taken as
materials with microstructures that have a sufficiently high degree of disorder as
to not be classifiable into one of the symmetry classes of crystallography, and
also to provide isotropy of the mechanical properties. It is found that the
amorphous microstructure contains junctions or joints where three material
members meet, and junctions were four material members meet, called J3 and
J4 junctions.

With many of the junctions as J3's there is a strong disruption of a network of
tetrahedral J4's and the presence of the J3's effectively destroys the diamond
cubic symmetry. It is likely that both of the isotropic properties of the amorphous
state become completely controlled by the bending type deformation of the
micromembers when under load. This is because of the disruption of the local



tetrahedral symmetry of the diamond cubic form. The shear and volumetric
mechanical properties would then be given by
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where p is the low density material density and p., is the composing
material density, u and k are the shear and bulk moduli respectively and Eg,

is the composing material Young's modulus. Some numerical front factors
would also appear.

The dependence upon (p/py)2 rather than the (p/p.y,) dependence of direct
resistance of material members results from the expected bending mechanism
of the amorphous microstructure. This does not mean that low density material
microstructures cannot exist that have a (p/py,) dependence, but it does mean
that amorphous microstructures formed and dominated by minimal conditions
are likely to be bending dominated in their mechanical resistance. This result is
in accordance with the observations of Gibson and Ashby (1982) in their
pioneering work on low density materials.
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